Moving Averages: Was sind sie unter den populärsten technischen Indikatoren, gleitende Durchschnitte werden verwendet, um die Richtung des aktuellen Trends zu messen. Jede Art von gleitendem Durchschnitt (üblicherweise in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl von vergangenen Datenpunkten berechnet wird. Einmal bestimmt, wird der daraus resultierende Durchschnitt dann auf ein Diagramm aufgetragen, um es den Händlern zu ermöglichen, geglättete Daten zu betrachten, anstatt sich auf die alltäglichen Preisschwankungen zu konzentrieren, die allen Finanzmärkten innewohnen. Die einfachste Form eines gleitenden Durchschnitts, die in geeigneter Weise als ein einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem man das arithmetische Mittel eines gegebenen Satzes von Werten annimmt. Zum Beispiel, um einen grundlegenden 10-Tage gleitenden Durchschnitt zu berechnen, würden Sie die Schlusskurse aus den letzten 10 Tagen addieren und dann das Ergebnis mit 10 teilen. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl der Tage (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Händler einen 50-tägigen Durchschnitt anstatt sehen möchte, würde die gleiche Art von Berechnung gemacht werden, aber es würde die Preise in den letzten 50 Tagen enthalten. Der daraus resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung davon zu vermitteln, wie ein Vermögenswert in Bezug auf die letzten 10 Tage festgesetzt wird. Vielleicht fragen Sie sich, warum technische Händler dieses Werkzeug einen gleitenden Durchschnitt nennen und nicht nur ein normales Mittel. Die Antwort ist, dass, wenn neue Werte verfügbar werden, die ältesten Datenpunkte aus dem Set gelöscht werden müssen und neue Datenpunkte kommen müssen, um sie zu ersetzen. Damit wird der Datensatz ständig auf neue Daten übertragen, sobald er verfügbar ist. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. In Abbildung 2, sobald der neue Wert von 5 dem Satz hinzugefügt wird, bewegt sich der rote Kasten (der die letzten 10 Datenpunkte repräsentiert) nach rechts und der letzte Wert von 15 wird aus der Berechnung gelöscht. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt der Datensatzabnahme, was es tut, in diesem Fall von 11 bis 10 zu sehen. Was verschieben die Durchschnitte aussehen Einmal die Werte der MA wurden berechnet, sie werden auf ein Diagramm geplottet und dann verbunden, um eine gleitende durchschnittliche Linie zu erzeugen. Diese geschwungenen Linien sind auf den Charts der technischen Händler üblich, aber wie sie verwendet werden, kann drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu jedem Diagramm hinzuzufügen, indem Sie die Anzahl der in der Berechnung verwendeten Zeiträume anpassen. Diese geschwungenen Linien mögen anfangs ablenkend oder verwirrend erscheinen, aber sie werden sich daran gewöhnt, wie es die Zeit verläuft. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, führen Sie gut eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von dem zuvor erwähnten einfachen gleitenden Durchschnitt unterscheidet. Der einfache gleitende Durchschnitt ist bei den Händlern sehr beliebt, aber wie alle technischen Indikatoren hat er seine Kritiker. Viele Einzelpersonen argumentieren, dass die Nützlichkeit des SMA begrenzt ist, weil jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die jüngsten Daten signifikanter sind als die älteren Daten und einen größeren Einfluss auf das Endergebnis haben sollten. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seither zur Erfindung von verschiedenen Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Lesungen siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller bewegter Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art gleitender Durchschnitt, der den jüngsten Preisen mehr Gewicht verleiht, um es besser zu machen Zu neuen Informationen. Lernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Charting-Pakete die Berechnungen für Sie machen. Jedoch für Sie Mathe-Aussenseiter da draußen, hier ist die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als vorherige EMA verwendet werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel von dort weiter fortfährt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die reale Beispiele enthält, wie man sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnet. Der Unterschied zwischen EMA und SMA Nun, da Sie ein besseres Verständnis davon haben, wie die SMA und die EMA berechnet werden, können Sie sich einen Blick darauf werfen, wie sich diese Durchschnittswerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gesetzt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 ist die Anzahl der in jedem Durchschnitt verwendeten Zeiträume identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu nutzen. Was sind die verschiedenen Tage Mittleren Durchlauf-Durchschnitten sind ein völlig anpassbarer Indikator, was bedeutet, dass der Benutzer frei wählen kann, was Zeitrahmen sie beim Erstellen des Durchschnitts wollen. Die häufigsten Zeiträume, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne ist, um den Durchschnitt zu schaffen, desto empfindlicher wird es Preisänderungen. Je länger die Zeitspanne, desto weniger empfindlich oder mehr geglättet wird, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen, um bei der Einrichtung Ihrer gleitenden Durchschnitte zu verwenden. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist, mit einer Reihe von verschiedenen Zeiträumen zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Moving Averages: Wie man ThemTechnical Analysis verwendet: Moving Averages Die meisten Chartmuster zeigen eine Menge von Variation in der Preisbewegung. Dies kann es schwierig für Händler, eine Vorstellung von einem Sicherheits-Gesamt-Trend zu bekommen. Eine einfache Methode Händler verwenden, um dies zu bekämpfen ist, um gleitende Durchschnitte anzuwenden. Ein gleitender Durchschnitt ist der durchschnittliche Preis einer Sicherheit über einen festgelegten Zeitaufwand. Durch das Plotten eines Sicherheits-Durchschnittspreises wird die Preisbewegung geglättet. Sobald die alltäglichen Schwankungen beseitigt sind, sind die Händler besser in der Lage, den wahren Trend zu identifizieren und die Wahrscheinlichkeit zu erhöhen, dass sie zu ihren Gunsten arbeiten wird. (Um mehr zu erfahren, lesen Sie die Moving Averages Tutorial.) Arten von Moving Averages Es gibt eine Reihe von verschiedenen Arten von gleitenden Durchschnitten, die in der Art variieren, wie sie berechnet werden, aber wie jeder Durchschnitt interpretiert wird, bleibt gleich. Die Berechnungen unterscheiden sich nur in Bezug auf die Gewichtung, die sie auf die Preisdaten setzen, wobei sie von der gleichen Gewichtung jedes Preispunktes zu mehr Gewicht auf die jüngsten Daten gelegt werden. Die drei häufigsten Arten von gleitenden Durchschnitten sind einfach. Linear und exponentiell. Simple Moving Average (SMA) Dies ist die häufigste Methode, um den gleitenden Durchschnitt der Preise zu berechnen. Es dauert einfach die Summe aller vergangenen Schlusskurse über den Zeitraum und teilt das Ergebnis durch die Anzahl der bei der Berechnung verwendeten Preise. Zum Beispiel werden in einem 10-tägigen gleitenden Durchschnitt die letzten 10 Schlusskurse addiert und dann durch 10 geteilt. Wie Sie in Abbildung 1 sehen können, ist ein Händler in der Lage, den Durchschnitt weniger auf die sich ändernden Preise durch die Erhöhung der Zahl zu reagieren Der bei der Berechnung verwendeten Perioden. Die Erhöhung der Anzahl der Zeiträume in der Berechnung ist eine der besten Möglichkeiten, um die Stärke des langfristigen Trends und die Wahrscheinlichkeit, dass es umgekehrt zu messen. Viele Einzelpersonen argumentieren, dass die Nützlichkeit dieser Art von Durchschnitt begrenzt ist, weil jeder Punkt in der Datenreihe den gleichen Einfluss auf das Ergebnis hat, unabhängig davon, wo es in der Sequenz auftritt. Die Kritiker argumentieren, dass die aktuellsten Daten wichtiger sind und daher auch eine höhere Gewichtung haben sollte. Diese Art von Kritik war einer der Hauptfaktoren, die zur Erfindung anderer Formen von sich bewegenden Mitteln führten. Linear gewichteter Durchschnitt Dieser gleitende Durchschnittsindikator ist der am wenigsten verbreitete der drei und wird verwendet, um das Problem der gleichen Gewichtung zu adressieren. Der linear gewichtete gleitende Durchschnitt wird berechnet, indem man die Summe aller Schlusskurse über einen bestimmten Zeitraum annimmt und sie durch die Position des Datenpunktes multipliziert und dann durch die Summe der Anzahl der Perioden dividiert. Zum Beispiel wird in einem fünftägigen linear gewichteten Durchschnitt der heutige Schlusskurs mit fünf, gestern um vier und so weiter multipliziert, bis der erste Tag im Periodenbereich erreicht ist. Diese Zahlen werden dann addiert und durch die Summe der Multiplikatoren dividiert. Exponential Moving Average (EMA) Diese gleitende Durchschnittsberechnung verwendet einen Glättungsfaktor, um ein höheres Gewicht auf die jüngsten Datenpunkte zu legen und gilt als wesentlich effizienter als der linear gewichtete Durchschnitt. Ein Verständnis der Berechnung ist nicht generell für die meisten Händler erforderlich, da die meisten Charting-Pakete die Berechnung für Sie tun. Das Wichtigste an den exponentiellen gleitenden Durchschnitt zu erinnern ist, dass es besser auf neue Informationen in Bezug auf den einfachen gleitenden Durchschnitt reagiert. Diese Reaktionsfähigkeit ist einer der Schlüsselfaktoren, warum dies der gleitende Durchschnitt der Wahl unter vielen technischen Händlern ist. Wie Sie in Abbildung 2 sehen können, steigt eine 15-Punkte-EMA und fällt schneller als ein 15-Perioden-SMA. Dieser leichte Unterschied scheint nicht so viel, aber es ist ein wichtiger Faktor zu bewusst sein, da es die Rückkehr beeinflussen kann. Wichtige Verwendungswege von gleitenden Durchschnitten Durchgehende Durchschnitte werden verwendet, um aktuelle Trends und Trendumkehrungen zu identifizieren sowie Unterstützung und Widerstandsniveaus einzurichten. Durchgehende Mittelwerte können verwendet werden, um schnell zu erkennen, ob sich eine Sicherheit in einem Aufwärtstrend oder einem Abwärtstrend bewegt, abhängig von der Richtung des gleitenden Durchschnitts. Wie Sie in Abbildung 3 sehen können, wenn ein gleitender Durchschnitt aufwärts geht und der Preis darüber liegt, ist die Sicherheit in einem Aufwärtstrend. Umgekehrt kann ein abwärts geneigter gleitender Durchschnitt mit dem unten stehenden Preis verwendet werden, um einen Abwärtstrend zu signalisieren. Eine andere Methode zur Bestimmung des Impulses besteht darin, die Reihenfolge eines Paares von gleitenden Durchschnitten zu betrachten. Wenn ein kurzfristiger Durchschnitt über einem längerfristigen Durchschnitt liegt, steigt der Trend Auf der anderen Seite signalisiert ein langfristiger Durchschnitt über einem kürzeren Durchschnitt eine Abwärtsbewegung im Trend. Die Verschiebung der durchschnittlichen Trendumkehrungen erfolgt auf zwei Arten: Wenn sich der Preis durch einen gleitenden Durchschnitt bewegt und wenn er sich durch bewegte durchschnittliche Übergänge bewegt. Das erste gemeinsame Signal ist, wenn der Preis durch einen wichtigen gleitenden Durchschnitt geht. Zum Beispiel, wenn der Preis einer Sicherheit, die in einem Aufwärtstrend war, unter einen 50-Perioden-gleitenden Durchschnitt fällt, wie in Abbildung 4, ist es ein Zeichen, dass der Aufwärtstrend umgekehrt werden kann. Das andere Signal einer Trendumkehr ist, wenn ein gleitender Durchschnitt einen anderen durchquert. Zum Beispiel, wie Sie in Abbildung 5 sehen können, wenn der 15-tägige gleitende Durchschnitt über dem 50-Tage-gleitenden Durchschnitt übergeht, ist es ein positives Zeichen dafür, dass der Preis beginnen wird zuzunehmen. Sind die bei der Berechnung verwendeten Perioden relativ kurz, z. B. 15 und 35, so könnte dies eine kurzfristige Trendumkehr signalisieren. Auf der anderen Seite, wenn zwei Durchschnitte mit relativ langen Zeitrahmen überqueren (zB 50 und 200), wird dies verwendet, um eine langfristige Trendverlagerung vorzuschlagen. Ein weiterer wichtiger Weg, um die Durchschnitte zu nutzen, ist die Identifizierung von Unterstützungs - und Widerstandsniveaus. Es ist nicht ungewöhnlich, einen Vorrat zu sehen, der fiel, stoppen seinen Niedergang und umgekehrte Richtung, sobald er die Unterstützung eines großen gleitenden Durchschnittes trifft. Ein Umzug durch einen großen gleitenden Durchschnitt wird oft als Signal von technischen Händlern verwendet, dass der Trend umgekehrt wird. Zum Beispiel, wenn der Preis durch den 200-Tage-gleitenden Durchschnitt in einer Abwärtsrichtung bricht, ist es ein Signal, dass der Aufwärtstrend umgekehrt ist. Durchgehende Durchschnitte sind ein leistungsfähiges Werkzeug, um den Trend in einer Sicherheit zu analysieren. Sie bieten nützliche Unterstützung und Widerstandspunkte und sind sehr einfach zu bedienen. Die häufigsten Zeitrahmen, die bei der Erstellung von gleitenden Durchschnitten verwendet werden, sind die 200-Tage-, 100-Tage-, 50-Tage-, 20-Tage - und 10-Tage-Tage. Der 200-Tage-Durchschnitt wird als ein gutes Maß für ein Handelsjahr, ein 100-Tage-Durchschnitt von einem halben Jahr, ein 50-Tage-Durchschnitt von einem Vierteljahr, ein 20-Tage-Durchschnitt von einem Monat und 10 - Tag durchschnittlich zwei Wochen. Durchgehende Mittelwerte helfen technischen Händlern, etwas von dem Lärm zu glätten, das in den täglichen Preisbewegungen gefunden wird, was den Händlern einen klareren Blick auf die Preisentwicklung gibt. Bisher haben wir uns auf die Preisbewegung konzentriert, durch Diagramme und Durchschnitte. Im nächsten Abschnitt, schauen Sie sich einige andere Techniken verwendet, um Preisbewegung und Muster zu bestätigen. Technische Analyse: Indikatoren und OszillatorenFügen Sie einen Trend oder gleitende durchschnittliche Linie zu einem Diagramm Gilt für: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mehr. Weniger Um Datentrends oder gleitende Durchschnitte in einem von Ihnen erstellten Diagramm anzuzeigen. Du kannst eine Trendlinie hinzufügen. Sie können auch eine Trendlinie über Ihre tatsächlichen Daten hinaus erweitern, um zukünftige Werte vorhersagen zu können. Zum Beispiel prognostiziert die folgende lineare Trendlinie zwei Quartale voraus und zeigt deutlich einen Aufwärtstrend, der für zukünftige Verkäufe vielversprechend aussieht. Sie können eine Trendlinie zu einem 2-D-Diagramm hinzufügen, das nicht gestapelt ist, einschließlich Bereich, Balken, Spalte, Zeile, Lager, Streuung und Blase. Sie können keine Trendlinie zu einem gestapelten, 3-D, Radar, Kuchen, Oberfläche oder Donut-Diagramm hinzufügen. Hinzufügen einer Trendlinie Auf Ihrem Diagramm klicken Sie auf die Datenreihe, zu der Sie eine Trendlinie hinzufügen möchten. Die Trendlinie startet am ersten Datenpunkt der gewünschten Datenreihe. Überprüfe die Trendline-Box. Um eine andere Art von Trendlinie zu wählen, klicken Sie auf den Pfeil neben Trendline. Und klicken Sie dann auf Exponential. Lineare Prognose Oder zwei Period Moving Average. Für weitere Trendlinien klicken Sie auf Weitere Optionen. Wenn Sie weitere Optionen wählen. Klicken Sie unter Trendline-Optionen auf die gewünschte Option im Format Trendline-Bereich. Wenn Sie Polynom wählen. Geben Sie im Feld Auftrag die höchste Leistung für die unabhängige Variable ein. Wenn Sie Moving Average auswählen. Geben Sie die Anzahl der Perioden ein, die verwendet werden sollen, um den gleitenden Durchschnitt im Feld Periode zu berechnen. Tipp: Eine Trendlinie ist am genauesten, wenn ihr R-Quadrat-Wert (eine Zahl von 0 bis 1, die zeigt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) bei oder nahe 1. Wenn Sie eine Trendlinie zu Ihren Daten hinzufügen , Berechnet Excel automatisch seinen R-squared-Wert. Sie können diesen Wert auf Ihrem Diagramm anzeigen, indem Sie den R-quadratischen Wert auf dem Diagramm anzeigen (Format Trendline-Bereich, Trendline-Optionen). In den folgenden Abschnitten erfahren Sie mehr über alle Trendlinienoptionen. Lineare Trendlinie Verwenden Sie diese Art von Trendlinie, um eine optimale Gerade für einfache lineare Datensätze zu erstellen. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten wie eine Zeile aussieht. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit einer stetigen Rate zunimmt oder abnimmt. Eine lineare Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate für eine Zeile zu berechnen: wobei m die Steigung ist und b der Zwischenpunkt ist. Die folgende lineare Trendlinie zeigt, dass der Umsatz der Verkäufe über einen Zeitraum von 8 Jahren konstant gestiegen ist. Beachten Sie, dass der R-Quadrat-Wert (eine Zahl von 0 bis 1, die zeigt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) 0,9792 ist, was eine gute Anpassung der Linie an die Daten ist. Zeigt eine best-fit gekrümmte Linie, ist diese Trendlinie nützlich, wenn die Rate der Veränderung in den Daten steigt oder sinkt schnell und dann Ebenen aus. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Eine logarithmische Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und ln die natürliche Logarithmusfunktion ist. Die folgende logarithmische Trendlinie zeigt das vorhergesagte Bevölkerungswachstum von Tieren in einem Festflächengebiet, wo die Population als Raum für die Tiere abnimmt. Beachten Sie, dass der R-Quadrat-Wert 0,933 ist, was eine relativ gute Anpassung der Linie an die Daten ist. Diese Trendlinie ist nützlich, wenn Ihre Daten schwanken. Zum Beispiel, wenn Sie Gewinne und Verluste über einen großen Datensatz analysieren. Die Reihenfolge des Polynoms kann durch die Anzahl der Schwankungen der Daten bestimmt werden oder wie viele Kurven (Hügel und Täler) in der Kurve erscheinen. Typischerweise hat eine Polynom-Trendlinie des Auftrags 2 nur einen Hügel oder ein Tal, ein Auftrag 3 hat ein oder zwei Hügel oder Täler, und ein Auftrag 4 hat bis zu drei Hügel oder Täler. Eine Polynom - oder Curvilinear-Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wo b und Konstanten sind. Die folgende Reihenfolge 2 Polynom Trendline (ein Hügel) zeigt die Beziehung zwischen Fahrgeschwindigkeit und Kraftstoffverbrauch. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was nahe bei 1 liegt, so dass die Zeilen gut an die Daten angepasst sind. Bei einer Kurvenlinie ist diese Trendlinie für Datensätze nützlich, die Messungen vergleichen, die mit einer bestimmten Rate zunehmen. Zum Beispiel die Beschleunigung eines Rennwagens in 1-Sekunden-Intervallen. Sie können keine Power Trendline erstellen, wenn Ihre Daten Null oder negative Werte enthalten. Eine Power-Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind. Hinweis: Diese Option ist nicht verfügbar, wenn Ihre Daten negative oder Nullwerte enthalten. Die folgende Abstandsmessung zeigt die Entfernung in Metern nach Sekunden an. Die Power Trendline zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,986 ist, was eine nahezu perfekte Passung der Linie zu den Daten ist. Wenn man eine gekrümmte Linie anzeigt, ist diese Trendlinie sinnvoll, wenn Datenwerte steigen oder sinken. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null oder negative Werte enthalten. Eine exponentielle Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und e die Basis des natürlichen Logarithmus ist. Die folgende exponentielle Trendlinie zeigt die abnehmende Menge an Kohlenstoff 14 in einem Objekt, wie es altert. Beachten Sie, dass der R-Quadrat-Wert 0,990 ist, was bedeutet, dass die Linie die Daten fast perfekt passt. Moving Average Trendline Diese Trendlinie zeigt Datenschwankungen aus, um ein Muster oder einen Trend deutlicher zu zeigen. Ein gleitender Durchschnitt verwendet eine bestimmte Anzahl von Datenpunkten (gesetzt durch die Periodenoption), mittelt sie und verwendet den Mittelwert als Punkt in der Zeile. Wenn zum Beispiel die Periode auf 2 gesetzt ist, wird der Mittelwert der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Mittelwert des zweiten und dritten Datenpunktes wird als zweiter Punkt in der Trendlinie usw. verwendet. Eine gleitende durchschnittliche Trendlinie nutzt diese Gleichung: Die Anzahl der Punkte in einer gleitenden durchschnittlichen Trendlinie entspricht der Gesamtzahl der Punkte in der Serie, abzüglich der Nummer, die Sie für den Zeitraum angeben. In einem Streudiagramm basiert die Trendlinie auf der Reihenfolge der x-Werte im Diagramm. Für ein besseres Ergebnis, sortiere die x-Werte, bevor du einen gleitenden Durchschnitt hinzufügst. Die folgende gleitende durchschnittliche Trendlinie zeigt ein Muster in der Anzahl der Häuser, die über einen Zeitraum von 26 Wochen verkauft wurden.
Comments
Post a Comment